

VAMS TIM

Advanced Air Transportation Technologies (AATT) Project: Distributed Air-Ground Traffic Management

Richard Mogford, Steve Green, Mark Ballin **AATT Project**

VAMS TIM

AATT Project Focus Areas

- Develop en route and terminal decision support tools (DSTs) for FAA Free Flight Phases 1 and 2
 - Enhance capabilities of present air traffic system
 - Deliver decision support tools to the FAA
- **Distributed Air-Ground Traffic Management (DAG-TM)** Research
 - Free Flight concept exploration
 - Evaluate feasibility of making major changes to current system and procedures
 - Deliver tested concepts to the FAA

DAG-TM Definition

- DAG-TM is the Free Flight part of AATT
- In DAG-TM flight crews, air traffic service providers, and aeronautical operational control dispatchers use distributed decision making to:
 - Enable user preferences/flexibility
 - Increase system capacity
 - Meet air traffic management requirements
- NASA is investigating the feasibility of DAG-TM concepts during the next four years
 - Using NASA Ames and Langley resources
 - Contractor support
- Will deliver tested concepts to the FAA

The DAG-TM Philosophy

Better Air Traffic Management through Distributed: Information - Decision Making - Responsibility

DAG-TM is a Gate-to-Gate Concept

 A matrix of gate-to-gate problems were defined by Ames, Langley, and Glenn researchers

 One or two DAG-TM-based concept element (CE) solutions were formulated to solve each problem

Concept elements are possible modes of operation within the scope of the RTCA Task Force 3 concept

The DAG-TM concept is comprised of 15 Concept Elements...

Concept Elements

Over-arching

Gate-to-Gate:

CE-0 Data Exchange

Pre-flight

Pre-flight Planning:

CE-1 User optimization for Constraints

En route / Terminal: (local-TFM)

Flight Operations

Surface Departure:

CE-2 Intelligent [Taxi] routing

Terminal Arrival:

• CE-9 Free Maneuvering Around Weather

CE-8 Collaboration for Arrival Metering

• CE-10 Trajectory Up link [to avoid] Weather

Terminal Departure:

- CE-3 Free Maneuvering for Separation
- CE-4 Trajectory Negotiation for Separation

En route: (Separation and local-TFM Conformance)

- CE-5 (a/b) Free Maneuvering
- CE-6 (a/b) Trajectory Negotiation

En route: (local-TFM)

CE-7 Collaboration for SUA/Wx/Complexity

Terminal Arrival:

- CE-11 Self Spacing for Accurate Merge
- CE-12 Trajectory Exchange for Accurate Merge

Terminal Approach:

CE-13 Closely Spaced Approaches

Surface Arrival:

CE-14 Intelligent [Taxi] Routing

CE-5:

Free Maneuvering for User-Preferred Separation Assurance and Local Traffic Flow Management (TFM) Conformance

Problem:

- Air Traffic Service Provider (ATSP) cannot accommodate trajectory change requests due to workload
- ATSP-issued clearances often cause excessive deviations from user preferred trajectories (UPTs) for separation assurance or are otherwise not optimal for users

Solution:

- <u>Air</u>: Cockpit Display of Traffic Information (CDTI)-equipped aircraft maneuver freely for separation assurance
- <u>Ground</u>: ATSP monitors separation (with ground-based DSTs) and provides separation assurance for non-equipped aircraft

Today's System

CE-5 Concept

CE-6: En Route (&Transition) Trajectory Negotiation for User-preferred Separation and Local-TFM Conformance Problem:

- ATSP workload limits throughput and accommodation of UPTs
- ATSP-issued clearances often cause excessive deviations for separation assurance or are otherwise not preferred by users Solution:
- User and ATSP negotiate for user-preferred trajectory changes:
 - User formulates UPT (based on constraints) and transmits to the ATSP
 - ATSP evaluates UPT for approval and amends constraints as needed
- CTAS-datalink-flight deck integration to facilitate:
 - Reduced datalink/CTAS input workload
 - Calibration of Flight Management System and CTAS
 - Trajectory-based clearances and improved flight conformance

CE-6 Concept

CE-11:

Self-Spacing for Merging and In-Trail Separation

Problem:

- Excessive spacing buffers on final approach reduce arrival throughput and airport capacity
- Reduced visibility may limit airport acceptance rate
 Solution:
- CDTI-equipped aircraft are cleared to maintain separation relative to a leading aircraft:
 - Flight has deck displays and guidance for:
 - Maneuvering
 - Self-merging and spacing
 - Fine tuning of fixed-time spacing
 - ATSP has displays and procedures for shared separation responsibility

Today's System

CE-11 Concept

DAG-TM Benefits

- CE-5
 - Self-management supports scalability of system
- CE-5 & 6
 - Increased user flexibility / efficiency within the presence of conflicting traffic and dynamic en route constraints
 - Shift/reduction in ATSP workload
 - Reduced excess separation buffers
 - Reduced voice communications
- CE-11
 - Reduced voice communications
 - Reduced controller workload for maintaining traffic separation
 - Increased arrival throughput

VAMS TIM

May 22, 2002

NASA DAG Research

- NASA Ames, Langley, and Glenn collaborating on DAG work
 - Ames focusing on air traffic control (ATC) or ground **DST** and procedures development
 - Langley responsible for flight deck DST and procedures research
 - Glenn researching communications infrastructure
- **Initially pursuing parallel research**
- Leading to air/ground integration studies to assess the feasibility of each concept
- Benefits data will also be collected in controlled experiments

Current NASA Ames Research

- Focusing on ATC component of DAG-TM CEs-5, 6, and 11
- Goal is to demonstrate initial feasibility of CEs
- Basing research on Concept Descriptions
- Filling out and evolving the concepts as research progresses
- Continuously involving operational people and stakeholders
- Incrementally building laboratory capabilities to address CEs
- Adding to complexity each year
- Following details are in process and subject to change

Ames Research Concept

- The following scenarios are being used to test CEs-5, 6, and 11
- The Basic Scenario is being augmented this year with additional traffic, complexity, weather, and procedures
- Demonstrations held in September 2001 and January 2002
- Next demonstration in June 2002
- Two week experiment in September 2002 to initiate evaluation of benefits and performance
- Goal is to complete the research by the end of 2004

Roles and Responsibilities: General Rules

Only One Entity is Responsible for Separation

- ATC has the sole authority to cancel self-separation
- Pilot can request the cancellation of free-flight

En Route Free Flight – Flight Crew Responsible

- Flight crew (upon acceptance) is responsible for separation assurance
- Flight crew can request ATC assistance for conflict resolution, flow control, and traffic management considerations

Transition Phase – Flight Deck Responsible

- ATC will provide Required Time of Arrival (RTA) advisory for meter fix
- Flight crew is responsible for separation and meeting RTA

TRACON Boundary – ATC Responsible

- Controller is responsible for separation
- Flight crew can be cleared to maneuver, merge, and maintain in-trail spacing
- Controller can revoke clearance at any time

Ames Research Facilities

- Flight simulator
- Airspace Operations Lab
- Cockpit Display of Traffic Information

Crew-Vehicle Simulation Research Facility

Advanced Cab

VAMS TIM

Airspace Operations Laboratory

May 22, 2002

Airspace Operations Lab (AOL): Air/ground Simulation Capability for Human-System Research

AOL Workstations

AOL Controller Display

CDTI

NASA Langley DAG-TM Research

- Developing flight deck tools and procedures for CE-5 and CE-11
- Conducted two recent experiments:
 - Airborne Use of Traffic Intent Information
 (AUTRII), focusing on quality of intent information
 - Advanced Terminal Area Approach
 Spacing (ATAAS), terminal arrival self spacing study
- Continuing with airborne DST development to support DAG concept element feasibility research

Airborne Use of Traffic Intent Information (AUTRII)

- Evaluated pilot capability to perform airborne selfseparation in presence of flow constraints
- Investigated advisability of exchanging of intent information between autonomous airborne operators
- Evaluated utility of initial airborne decision support and CDTI functions
- Evaluated pilot acceptance of role expansion to include separation responsibility

Comparison of Two Operational Modes

- Tactical Mode
 - Based on exchange of state information only
 - Near-term conflict detection (5 minutes)
 - Maneuvers implemented manually through Flight Control Panel
- Strategic Mode
 - Took advantage of Flight Management System (FMS) guidance and performance database
 - Incorporated state and intent information in conflict detection
 - Longer-term conflict detection (nominal 20+ min.)
 - Maneuvers implemented manually or through FMS guidance

ADVANCED AIR TRANSPORTATION TECHNOLOGIES

VAMS TIM May 22, 2002

CDTI developed for AUTRII combines features from NASA Ames, NLR, and NASA Langley:

- Resolution advisories
- Conflict alerting symbology
- Conflict prevention "nogo" bands on heading, speed, and vertical speed scales
- Required time of arrival
- Predictors / flight plans
- Autonomous vs. managed aircraft
- Tail tag altitude absolute / relative
- Altitude filter
- Climb / descent symbology
- Area hazard display

AUTRII Summary

- Initial Conclusions
 - Pilots met constraints in both strategic and tactical modes
 - Operational complexity did not affect pilot performance
 - Pilots preferred strategic mode (with state & intent information)
 - Display features were effective
- Additional Data Recorded for Analysis
 - Complete trajectories as flown
 - Pilot actions (maneuvers, display manipulations)
 - Workload measures (objective, subjective)
- Plans for Continued Research
 - Display evolution: vertical CD&R, weather conflicts, dark screen design
 - Descent CD&R with crossing restrictions

ATAAS Simulation Study Objectives

- Pilot evaluation (acceptability) of:
 - Approach spacing tasks (including charts, procedures and use of ATAAS system)
 - ATAAS user interface
- Pilot assessment of workload with different levels of automation
- Evaluation of algorithm performance when implemented on "real-world" equipment

ATAAS DST

VAMS TIM

Summary of Preliminary ATASS Results

- Algorithm performance
 - Spacing interval within one second of target when ATAAS speed guidance coupled with FMS
 - Spacing interval within 5 seconds when pilots followed speed commands with manual throttles or MCP
 - Standard deviation 1.3 to 1.7 seconds for the different control modes

Preliminary Post-Run Subjective Ratings

Pilots rated workload for ATAAS approach comparable to standard approach procedures

(1=much lower, 4=the same, 7=much higher):

	Physical	Mental	Overall
Mean	3.8	3.9	4.0
Std. Dev.	1.2	1.2	1.1

Pilots rated head-down time acceptable
 (1=not at all acceptable, 4=borderline, 7=very acceptable):

	Downwind	Base	Final
Mean	5.8	6.0	6.2
Std. Dev.	1.5	1.2	0.9

NASA Langley Research Facilities

- Air Traffic Operations Laboratory
- Flight Simulators
- B-757 Aircraft

Air Traffic Operations Laboratory

Subject Pilots

Background Traffic Simulation

Simulation Manager / Researchers

Air Traffic Controllers

Batch Pilot Stations

LaRC Flight Deck Simulators

Integration Flight Deck

Langley B757 Test Aircraft

The End